

Problem 1 (2 points)

For the circuit above give the corresponding Thevenin equivalent parameters V_{TH} (1.5 point) and RTH (0.5 points) [use only the Thevenin-Norton concepts for your computations]

Problem 2 (1.5 points)

T-feedback system: Ideal opamp

Prove that the output voltage Vo is given by:

$$\frac{V_o}{V_I} = -\left[\frac{R_2}{R_1} + \frac{R_4}{R_1}\left(1 + \frac{R_2}{R_3}\right)\right]$$

Problem 3 (2 points)

Consider the oscillator circuit:

$$\tau_3 = \mathbf{R}_3 \mathbf{C}_3$$

(b: 1 point) Prove: $\tau_{1} = R_{1}C_{1}.$ $V(2) = \frac{\left(\frac{R_{1}}{R_{2}} + j\omega\tau_{1}\right)V(3) + V(1)}{1 + \frac{R_{1}}{R_{2}} + j\omega\tau_{1}}$ (c: 0.5 points) Prove: $V(3) = V(4) = \frac{V(2)}{1 + j\omega\tau_{2}}$

 $\tau_2 = R_2 C_2$

Problem 4 (2 points)

(a) (0.5 point)

Is the logic system bellow shown a realization of a logic gate XOR?

Useful logic gates:

AND	в = с	$C = A \cdot B$	A B C 0 0 0 0 1 0 1 0 0 1 1 1
OR	° € ∎	$C = A \times B$	A B C 0 0 0 0 1 1 1 0 1
NOT	^ ∽	B = A	A B 0 1 1 0
NAND	Å ⊒ ⊖ °	$C = \overline{A \cdot B}$	A B C 0 0 1 0 1 1 1 0 1
NOR		$C = A \times B$	A B C 0 0 1 0 1 0 1 0 0
XOR		$\mathbf{C}=\mathbf{A}\oplus\mathbf{B}$	A B C 0 0 0 0 1 1 1 0 1
XNOR	° €	$C = \overline{A \oplus B}$	A B C 0 0 1 0 1 0 1 0 0

(b) (1.5 points)

Design a transformer that takes a 4-bit number ABCD and gives a single output Y true (Y=1) if and only if this is prime number

A

γ

				C D	
Г				I	
I	Decimal	ABCD	Y		
I	0	0000			
I	1	0001			
I	2	0010			
I	3	0011			
I	4	0100			
I	5	0101			
I	6	0110			
I	7	0111			
I	8	1000			
I	9	1001			
I	10	1010			
I	11	1011			
I	12	1100			
	13	1101			
	14	1110			
	15	1111			

Problem 5 (1 point)

Assume that $V + V_c < V_{AC}$

Consider Vc=0.5 V (diode voltage for forward conduction) and V=3 V

Draw the output voltage Vuit and explain briefly why.

Problem 6 (1.5 point)

Consider the FET amplifier circuit shown bellow:

Show that the amplification ratio is given by:

$$v_o / v_i = g_m (R_s) / [1 + g_m R_s + (R_s + R_{DL}) / r_d]$$